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ABSTRACT

Background and aims Patterns of brain activation have demonstrated promise as prognostic indicators in substance
dependent individuals (SDIs) but have not yet been explored in SDIs typical of community-based treatment settings.

Design Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from
the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes.

Setting Community-based substance use programs in Bloomington, Indiana, USA. Participants Twenty-three SDIs
(17male, aged 18–43 years) in an intensive outpatient or residential treatment program; abstinent 1–4weeks at baseline.

Measurements Event-related brain response, BART performance and self-report scores at treatment onset, substance
use outcome measure (based on days of use). Findings Using voxel-level predictive modeling and leave-one-out cross-
validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus
(Amyg/aHipp) at baseline successfully predicted greater substance use during the 3-month study interval (P ≤ 0.006,
cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to neg-
ative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback
(r(23) = �0.544, P = 0.007; r(23) = �0.588, P = 0.003). A model including Amyg/aHipp activation, faster
reward-seeking after negative feedback and significant self-report scores accounted for 45% of the variance in substance
use outcomes in our sample. Conclusions An elevated response to unexpected negative feedback in bilateral amygdala
and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based
treatment.

Keywords Amygdala, Balloon Analogue Risk Task, fMRI, naturalistic samples, negative feedback, prediction, relapse,
stress reactivity, substance use disorders, treatment outcome.
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INTRODUCTION

The majority of substance-dependent individuals (SDIs) re-
sume use within 2 years of treatment [1,2] and as few as
4% achieve continuous abstinence [3]. Recovery from sub-
stance use disorders (SUDs) involves a complex interaction
between intrinsic and extrinsic factors, including motiva-
tion, social environment and capacity for balanced
decision-making—which vary across individuals and over
time [4]. As demographic, psychosocial, clinical and
cognitive–behavioral predictors have demonstrated limited
utility [5], attention has turned increasingly to brain-based
‘neuromarkers’ of relapse risk [6].

Alterations in brain function underlie compulsive use
(e.g. incentive sensitization of drug cues) and failures of

self-control [7] and these may serve as prognostic indica-
tors in SDIs. For example, aberrant activation (e.g. hyper-
activation of reward and sensory processing areas) to
substance-related [8–15] and non-substance-related re-
ward cues [16–20] has been associated with earlier
and/or more likely relapse, as has impaired control-related
processing during risky [21] or probabilistic decision-
making [18,19,22] and other control-demanding tasks
[13,23–27].

In line with models of stress-induced relapse [28,29],
relapse risk also increases with ventromedial prefrontal
cortex/anterior cingulate cortex (vmPFC/ACC) hyperacti-
vation during relaxation and hypoactivation during stress
[30,31], as well as reduced functional connectivity be-
tween vmPFC/ACC and amygdala, which may reflect
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impaired stress and affect regulation [32]. Risk-related
structural abnormalities within prefrontal control areas
[8,15,33–36] and the amygdala [8,15,33,34,37], are also
consistent with this account.

Relapse-related neuromarkers have contributed to en-
thusiasm for neuroimaging to enhance clinical assessment
and inform personalized treatment [6]. Several studies
have demonstrated that brain-based measures outperform
subjective self-reports and other traditional clinical indica-
tors [12,13,21,25,26,31,32]. However, as was identified
recently by Whelan & Garavan [38], many studies fail to
correct for statistical optimism when assessing brain-based
predictors and may not generalize. This may be particu-
larly problematic in studies of substance use relapse, which
have focused generally on a single SUD and excluded
comorbid conditions, already limiting generalizability to
real-world treatment settings.

SUDs co-occur commonly with internalizing psycho-
pathology, which has also been associated with abnormal
reward-processing and stress-reactivity [39,40]. Relapse
prediction based on naturalistic samples (i.e. including co-
morbid SUD and internalizing disorders) may thus reflect
transdiagnostic constructs relevant to chronicity. Dys-
function of negative valence systems underlying threat
and stress-reactivity, for example, may increase vulnera-
bility to internalizing disorders [40–42] and substance
use compounds this effect [43]. However, SUDs and inter-
nalizing comorbidities may also act in opposition; for ex-
ample, with the former decreasing and the latter
increasing error signaling [44]. It is therefore possible
that neural predictors from SUD samples without comor-
bidity will not effectively translate for clinical use.

The current study represents a first step toward ad-
dressing this issue by exploring neural predictors of re-
lapse in a heterogeneous sample of SDIs, typical of
community-based treatment settings. We used a Balloon
Analogue Risk Task (BART) that concurrently measures
several predictive domains (i.e. risky decision-making,
reward/negative outcome processing), uses monetary in-
centives rather than substance-specific stimuli and has
ecological validity [45]. Fast event-related imaging
further allowed differentiation of decision-making and
outcome evaluation phases of the BART [46].
Non-brain-based measures were also assessed, against
which the predictive utility of brain-based measures could
be evaluated. Despite including a mixed SUD sample with
representative comorbidity, we hypothesized that previous
findings of increased relapse risk with impaired error sig-
naling in ACC [25] would replicate for negative outcomes
in the BART and extend to risk-related signaling during
decision-making. Due to our novel use of a community-
based sample, we additionally conducted data-driven,
exploratory analyses of corticolimbic circuitry to inform
future work.

METHODS

Design

We utilized a prospective clinical outcome design. Neuro-
imaging, cognitive–behavioral and self-report measures
were collected at the beginning of treatment and examined
as candidate predictors of 3-month substance use
outcomes.

Participants

Twenty-six SDIs were enrolled upon engagement with
community-based treatment and assessed within
1–4weeks of self-reported abstinence; a sample of 23 (aged
18–43 years) was followed for 3months (see Table 1 for de-
mographic and recruitment data). Participants received
treatment-as-usual through one of two abstinence-
oriented, community-based addiction treatment programs
(one intensive outpatient and one residential program; see
Supporting information for additional details) and were
not receiving replacement pharmacotherapy. All met
DSM-IV criteria for alcohol, drug or polysubstance
dependence, without history of traumatic brain injury,
neurocognitive disorders, bipolar or psychotic illness. An
electronic breathalyzer and six-panel urine drug screen
were conducted at baseline and 3-month follow-up;
behavioral signs of intoxication were also evaluated.
Assessments were conducted only if blood alcohol content
was 0.000% by volume, urinalysis was negative for illicit
substances and behavioral signs of intoxication were
absent. Participants provided written informed consent;
all methods were approved by the Indiana University
Institutional Review Board.

Functional magnetic resonance imaging (fMRI)
acquisition and BART procedure

Imaging data were acquired at baseline and 3-month
follow-up using a 32-channel head coil-equipped, Siemens
Magnetom Trio 3-Tesla MRI scanner; follow-up data are
reported elsewhere [47]. Echo-planar gradient-echo T2*-
weighted sequences of 240whole-brain volumesmeasured
the functional blood-oxygen-level-dependent (BOLD) re-
sponse during two 8-minute blocks of BART (see Fig. 1).
Acquisition, task and pre-processing parameters were
identical to previous work [46,48]; details provided in
Supporting information. In brief, the BART involved
button-press responses to either ‘Inflate’ a balloon—incre-
mentally and quasi-exponentially increasing its size and
value in parallel with the probability of explosion—or ‘Re-
deem’ it for its current value. Stimuli were presented using
E-Prime (Psychology Software Tools, Pittsburgh, PA, USA);
a projector was used for display within the scanner bore.
Trials began with an image of a balloon. A red rectangle
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was presented for 1.5–2.5 seconds, indicating to wait be-
fore responding and subsequently turning green, indicat-
ing to respond when ready. Participants responded with
left or right index fingers (response-mapping
counterbalanced across subjects).

Each balloon sequence began with a balloon worth
$0.00. After each response, a jittered delay of 0–6 seconds
preceded feedback (‘Successful_Gamble’, ‘Explode’,
‘Confirmed_Gain’) such that the BOLD response could be
estimated separately for decision and outcome intervals.
‘Inflate’ responses could result in either (1) a
‘Successful_Gamble’, whereupon the display was updated
with a larger balloon and increased wager value, initiating
the next decision, or (2) ‘Explode’ feedback, indicating loss
of the current wager. ‘Redeem’ responses always resulted
in ‘Confirmed_Gain’ feedback and addition of the balloon
value to block winnings (visible at bottom of screen).

Participants completed an average of 95 decision trials
and 16 balloon sequences per block.

Additional measures

The time-line follow-back procedure was administered at
1-, 2- and 3-month time-points to document drug and al-
cohol use during the study interval. Narrative details of use
(e.g. subjective intoxication) were also acquired. Details of
the time-line follow-back procedure, as well as
psychodiagnostic, self-report and cognitive–behavioral
assessments are provided in Supporting information.

fMRI analysis

Imaging data were analyzed using SPM5 and Matlab
R2013a. BART BOLD responses were estimated using a

Table 1 Summary of demographic, recruitment and clinical characteristics of study sample (n = 23).

Demographic variablesa Mean (SD) or count
Age 27 (6.5)
Male 17
Total years of education 13 (1.8)
Employment status Employed full time 6

Employed part time 6
Unemployed 9
Student 2

Recruitment information Count
Treatment setting Outpatient 14

Residential 9
Referral source Self 13

Drug court 5
Probation 5

Clinical variables Mean (SD) or count
Times in previous treatment 2 (2.4)
Primary DSM-IV diagnosis Alcohol dependence 13

Sedative, hypnotic or anxiolytic dependence 1
Cannabis dependence 1
Amphetamine dependence 1
Opioid dependence 3
Polysubstance dependence 4

Additional psychiatric diagnoses Major depressive disorder 4
Dysthymic disorder 1
Generalized anxiety disorder 4
Post-traumatic stress disorder 1
Anxiety disorder NOS 2
Antisocial personality disorder 1
None 7

Substance use outcomes Mean (SD)
Substance use metric 0.64 (0.12)
% Days of use 12.8 (24.2)
% Days use to intoxication 9.6 (16.0)

aThe substance use metric (SUM) did not correlate with demographic factors, age (r(23) = �0.171, P = 0.435) and years of education (r(23) = �0.332,
P = 0.122), and did not differ significantly with respect to sex (t(22) = 2.08, P = 0.222) or employment status (F(3,19) = 0.67, P = 0.581). SD = standard de-
viation; NOS = not otherwise specified.
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general linear model with 20 regressors: six motion regres-
sors, two constants, five main effect regressors (‘Redeem’,
‘Inflate’, ‘Explode’, ‘Successful_Gamble’, ‘Confirmed_
Gain’), five parametric modulators representing explosion
probability for each event and 2 parametric modulators
representing ‘Redeem’ and ‘Inflate’ response times (RTs).
A canonical hemodynamic response function was used to
model event-related signals during decision (i.e. RT) and
outcome (i.e. feedback onset) intervals. Subject was in-
cluded as a random effect at the second-level.

Contrasts isolated the effects associated with negative
outcomes over uncertain (‘Explode—Successful_Gamble’)
and certain gains (‘Explode—Confirmed_Gain’), decisions
to pursue uncertain gains (‘Inflate—Redeem’) and deci-
sions to pursue certain gains (‘Redeem—Inflate’), as well
as regions in which trial-to-trial fluctuations in BOLD sig-
nal correlated with the probability of explosion [i.e. para-
metric modulators, designated by ‘*p(Explode)’]. Using a
cluster-forming threshold of P < 0.001, clusters of 30 or
more voxels with a cluster-corrected P-value of < 0.05
were identified as regions of interest (ROIs). The cluster-
extent threshold was determined using AFNI’s 3dClustSim
to provide a type I error rate of α=0.005. Two participants
were excluded from the second-level ‘Explode*p(Explode)’
contrast, because low explosion frequency precluded
unique specification in the first-level general linear model.

Whole-brain correlational analyses were conducted for
each contrast to identify regions in which task-related
activitywas associatedwith substance use during the study
interval.A substance usemetric (SUM)was calculated from
time-line follow-backdata foreachparticipant, representing
incidents of drugandalcohol use during the study,weighted
bypresence/absenceof intoxication1;a log-oddstransforma-
tionwasappliedprior toanalysis. Thisapproachwaschosen
to more effectively capture variability in substance use
outcomeswithin the study sample (see Supporting informa-
tion). Next, voxel-level predictive modeling and leave-one-
out cross-validation were used to identify ROIs predictive of
substance use outcomes and compare performance of
models based on brain- and/or non-brain-based predictors
(see Supporting information for details). Briefly, linear re-
gressionwasappliedwithcross-validationonavoxel×voxel
basis. Clusters wherein constituent voxels yielded predicted
SUMvalues for left-out participants that correlated strongly
with actual SUMvalues were targeted for further investiga-
tion. Leave-one-out cross-validation was selected for
optimism-correctionbecausethisapproachhasbeenrecom-
mended for small neuroimaging data sets [49] and used in
similarworkwith a comparable sample size [16]. Predictive
analysis of binary treatment outcomes was also conducted
using receiver operating characteristic (ROC) curves and is
described in Supporting information and Figure S1.

Figure 1 Schematic representation of the Balloon Analogue Risk Task (BART), reproduced with permission from Fukunaga et al. [46] [Colour figure
can be viewed at wileyonlinelibrary.com]

1(Total days monitored/4) × [days alcohol used without intoxication + (2 × days alcohol used with intoxication) + days drugs used without intoxication
+ (2 × days drugs used with intoxication)].
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Analysis of cognitive–behavioral and self-report measures

Pearson’s correlations with the substance use outcome
variable (i.e. SUM) were calculated for each measure.
Paired t-tests and repeated-measures analysis of variance
(ANOVA) were utilized for comparisons between condi-
tions, as necessary. Statistics were computed in SPSS.
Self-report and behavioral findings for cognitive–
behavioral tasks other than BART are summarized in
Supporting information and Table S1.

RESULTS

BART performance

BART performance is summarized in Table 2. Consistent
with successful performance, average winnings were $16
per block, ‘Confirmed_Gains’ occurred more often than
‘Explode’ events and the average number of inflations prior
to ‘Redeem’/‘Confirmed_Gain’ events was higher than that
for ‘Explode’ outcomes. The number of completed balloons,
proportion of balloons ending in ‘Confirmed_Gain’ versus
‘Explode’ and number of inflations did not differ signifi-
cantly between blocks. There were no significant effects
of block or response type on RT. A higher number of infla-
tions prior to ‘Redeem’ responses was associated with in-
creased substance use during the study interval;
this effect was significant at P = 0.046, two-tailed,
(r(23) = 0.42). Average RT did not correlate significantly
with SUM (r(23) = �0.23, P = 0.291).

Neural prediction of relapse risk

Basic event-related andparametricmodulator contrasts are
described in Supporting information and Tables S2a–c.
Whole-brain correlational analyses between planned con-
trasts and SUMvalues are summarized in Table 3. Contrary
to our hypotheses, an elevated response to negative

feedback (‘Explode—Confirmed_Gain’) in the right supple-
mentary motor area (SMA), left dorsal posterior cingulate
and a region including right amygdala and anterior hippo-
campus (Amyg/aHipp) was associated with greater use, as
was an increased BOLD response with increasing explosion
probability in midline SMA during ‘Inflate’ events [i.e.
Inflate*p(Explode)]. A similar effect was observed in the left
angular gyrus and putamen for ‘Successful_Gamble*p
(Explode)’ and in the right insula and left SMA for
‘Explode*p(Explode)’. Greater ‘Redeem—Inflate’ activation
in the left inferior frontal gyrus (IFG) was associated with
less use.

Given our modest sample size, correlational findings
may not have external validity (see [38]). To address this,
leave-one-out cross-validation was used to test outcome
prediction by event-related brain signals on a voxel × voxel
basis. Only two contrasts (‘Explode—Confirmed_Gain’ and
‘Explode—Successful_Gamble’) revealed regions of 30 or
more voxels in which predicted outcomes for left-out par-
ticipants correlated strongly with actual SUM values
(r ≥ 0.70) and survived cluster-level correction. For both
contrasts, peakmodel performance (indicated by the stron-
gest correlation between actual and predicted values) was
identified in bilateral Amyg/aHipp (see Table 3, Fig. 2). It
is noted that the ‘Explode—Successful_Gamble’ right
Amyg/aHipp cluster was 29 voxels, just below our conser-
vative, a priori threshold.

To investigate further these significant clusters, spheri-
cal ROIs (radius = 1 voxel; volume = 7 voxels) were defined
around voxels associated with peak model performance in
bilateral Amyg/aHipp and leave-one-out cross-validation
was repeated following addition of non-brain-based mea-
sures that correlated significantly with SUM (specifically,
DOSPERT expected benefit scores), as well as a ‘null’model
including only non-brain-based covariates (NM1). Mean
Akaike information criterion (AIC) values for each model
and ROI are summarized in Table 4. Model comparison

Table 2 Summary of Balloon Analogue Risk Task (BART) behavioral performance measures (n = 23).

Confirmed_Gain Explode All
Confirmed_Gain versus
Explode t-value (P-value)

No. of balloons 21 (5.4) 11.7 (4) 32.7 (3.1) 4.78 (< 0.001)
Inflation count Mean (SD) 6.3 (0.7) 5.2 (0.6) 5.9 (0.5) 9.77 (< 0.001)

Range 2–10 2–9 2–10 NA
Within-subject SD 1.0 1.3 1.3 NA

Redeem Inflate All F-value (P-value)

Response time (ms) Mean (SD) 1018 (732) 1044 (445) 1037 (463) NA
Main effect: block 1.55 (0.226)

Main effect: response type 0.08 (0.782)
Block × response type interaction 1.90 (0.182)

SD = standard deviation; NA = not applicable.
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was conducted separately for each ROI; multiple brain-
based predictors were not included in the same model
due to collinearity concerns. Left and right ‘Explode—
Successful_Gamble’ ROIs and the right ‘Explode—
Confirmed_Gain’ ROI passed the model comparison test,
each demonstrating a reduction in AIC following addition
of the voxel-based predictor. A second null model (NM2)

added covariates with P ≤ 0.125 (i.e. DOSPERT risk percep-
tion and Go/No-Go performance) and intuitive clinical in-
dicators (i.e. craving scores, SUD symptom counts). Here,
addition of the voxel-based predictor increased AIC (see
Table 4), indicating that the brain-based measure was
not supported with this expanded set of non-brain-based
covariates.

Table 3 Regions of interest from whole-brain correlation analysis of substance use outcomes and leave-one-out cross-validation analysis.

Negative correlation: greater activation associated with less use
Peak MNI
coordinates

Contrast Region Size x y z t-Value
P-value
(cluster- corrected)

Redeem—Inflate L inferior frontal
gyrus (BA 45/47)

105 –46 24 8 5.23 0.019

Explode—Successful_Gamble NA – – – – – –

Explode—Confirmed_Gain NA – – – – – –

Redeem*p(Explode) NA – – – – – –

Inflate*p(Explode) NA – – – – – –

Explode*p(Explode) NA – – – – – –

Successful_Gamble*p(Explode) NA – – – – – –

Confirmed_Gain*p(Explode) NA – – – – – –

Positive correlation: greater activation associated with more use Peak MNI coordinates

Contrast Region Size x y z t-Value
P–value
(cluster-corrected)

Redeem—Inflate NA – – – – – –

Explode—Successful_Gamble NA – – – – – –

Explode—Confirmed_Gain R supplementary motor
area (BA 6)

222 14 –26 62 5.55 < 0.001

R amygdala/anterior hippocampus 341 34 –22 –16 5.54 < 0.001
L dorsal posterior cingulate (subgyral) 148 –24 –30 46 5.37 0.001

Redeem*p(Explode) NA – – – – – –

Inflate*p(Explode) L/R supplementary motor
area (BA 6)

132 –8 0 68 5.61 0.003

Explode*(Explode) R insula (BA 13) 56 36 4 12 4.41 0.042
L supplementary motor

area (BA 6)
74 –12 –12 60 3.91 0.010

Successful_Gamble*(Explode) L angular gyrus (BA 39) 149 –40 –82 30 5.90 0.001
L putamen 83 –26 10 –4 3.78 0.028

Confirmed_Gain*p(Explode) NA – – – – – –

Leave-one-out cross-validation analysis Peak MNI coordinates

Size x y z Mean r-valuea
P-value
(cluster–corrected)

Explode—Successful_Gamble L amygdala/anterior hippocampus 38 –34 –4 –22 0.77 < 0.001
R amygdala/anterior hippocampus 29 34 –20 –16 0.78 0.006

Explode—Confirmed_Gain L amygdala/anterior hippocampus 38 –34 –8 –26 0.80 < 0.001
R amygdala/anterior hippocampus 33 38 –16 –16 0.80 0.002

aReported r-values reflect the mean of voxel-level correlation coefficients for each cluster, representing the relationship between actual and predicted SUM
values for the left-out participant. Correlation coefficients are provided as descriptive rather than inferential statistics and corresponding P-values are omitted.
Reported P-values reflect whole-brain cluster-level correction to account for multiple comparisons. MNI = Montreal Neurological Institute; SUM = substance
use metric; NA = not applicable.
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Behavioral correlates of predictive activation

Although not predicted in our original hypotheses, identifi-
cation of Amyg/aHipp-based predictive signals may be con-
sistent with the amygdala’s putative role in stress-induced
reinstatement of drug-seeking [28]. If unexpected negative
feedback (i.e. stress) increased reward-seeking in the cur-
rent paradigm, it may be evident in faster inflation
responses following ‘Explode’ versus ‘Confirmed_Gain’
events. To explore this possibility, the difference in initial in-
flation RT between post-Explode and post-Confirmed_Gain
events was calculated for each participant
([mean = �229 ms, standard deviation (SD) = 225] and
correlated significantly with SUM, such that greater post-
explosion speeding corresponded with increased use
(r(23) =�0.537, P = 0.008). In addition, a significant nega-
tive correlation between BOLD signal change and post-
explosion speeding (i.e. greater activation during ‘Explode’
events associated with faster post-explosion RTs) was iden-
tified in three of four Amyg/aHipp ROIs (see Fig. 2).

Leave-one-out cross-validation was again repeated
with post-explosion speeding added as a significant
non-brain-based covariate (NM3). Resulting AICs were
lower for the null model in all four ROIs (see Table 3) but

approached zero for both ROIs in right Amyg/aHipp, sug-
gesting that improved model performance with addition
of the voxel-based predictor was nearly sufficient to justify
increased model complexity. For right Amyg/aHipp ROIs,
the full model accounted for 45.2 and 45% of variance in
substance use outcomes for ‘Explode—Confirmed_Gain’
and ‘Explode—Successful_Gamble’ contrasts, respectively.
Equations for these models are provided in Supporting
information.

DISCUSSION

This study extends previous findings that brain-basedmea-
sures outperform non-brain-based measures (e.g. clinical
indicators, self-reports, etc.) in predicting substance use
treatment outcomes by demonstrating this effect in a
mixed sample of SDIs, generally representative of
community-based treatment settings with respect to psy-
chiatric and substance use comorbidities. While our initial
hypotheses were not supported, voxel × voxel predictive
modeling specifically revealed a bilateral effect in
Amyg/aHipp for negative feedback contrasts, wherein an
elevated Amyg/aHipp response was associated with
increased use during early recovery. This effect

Figure 2 Correlation between the blood-oxygen-level-dependent (BOLD) response to negative feedback in predictive regions identified through
leave-one-out cross-validation analysis and the post-explosion speeding effect. Regions of interest (ROIs) identified in the leave-one-out cross-vali-
dation analysis for both contrasts include voxels in left and right amygdala and anterior hippocampus. Scatterplots depict mean BOLD responsewithin
spherical ROIs (radius = 1 voxel) defined around the maximally predictive voxel for each contrast (38, �16, �16 for ‘Explode—Confirmed_Gain’
and �34,�4, �22 for ‘Explode—Successful_Gamble’) versus post-explosion speeding (i.e. Post-Explosion RT—Post-Confirmed_Gain RT). Mean
BOLD responses in left and right Amyg/aHipp ROIs for the ‘Explode—Confirmed_Gain’ contrast correlated significantly with post-explosion speed-
ing (r(23) =�0.544, P=0.007 and r(23) =�0.588, P= 0.003, respectively), indicating that a stronger response to negative feedback was associated with
a greater reduction in post-explosion response time (RT). The left ROI for the ‘Explode—Successful_Gamble’ contrast also correlated significantly
with post-explosion speeding (r(23) = �0.496, P = 0.016) but the right ROI did not (r(23) = �0.345, P = 0.107) [Colour figure can be viewed at
wileyonlinelibrary.com]
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corresponded with faster inflation responses following neg-
ative feedback, possibly reflecting increased reward-seeking
in response to negative affect, as predicted by models of
stress-induced relapse.

Importantly, the consistency of observations
between ‘Explode—Confirmed_Gain’ and ‘Explode—
Successful_Gamble’ contrasts suggests that the identified
effect is associated with negative feedback processing and
is not a consequence of differing feedback certainty in
‘Explode’ versus ‘Confirmed_Gain’ conditions. However,
our findings require replication, and effects of uncertainty
versus negative valence should be examined directly in
future work. Taken together, a predictive model including
right Amyg/aHipp response to negative feedback (from ei-
ther contrast), the behavioral post-explosion speeding
effect and DOSPERT expected benefits scores accounted
for approximately 45% of variance in substance use out-
comes in our sample. These results support the utility of
multi-modal predictive models (including neural, behav-
ioral and self-report measures) to assess relapse vulnerabil-
ity in community-based treatment settings.

Consistent with our findings, abnormality of the amyg-
dala and hippocampus has been reported widely in SDIs.
Reduced amygdalar and hippocampal volumes have been
noted in SDIs [33,34,37], and smaller amygdalae have
been associated with increased craving and relapse severity
[34,37]. Hyperactivation of the amygdala and hippocam-
pus in SDIs has also been observed in response to stress
[31] and substance-related cues [31,50] and increased
resting cerebral blood flow to posterior hippocampus has
been associated with greater relapse risk [51,52]. Amyg-
dala activation has similarly been associated with poorer
treatment outcomes [17], as well as increased cue-induced
craving [50,53–57]. Importantly, the amygdala is integral
to the aversive experience of monetary loss [58], as well as
negative affect more generally [59], suggesting that a
stronger experience of negative outcomes may contribute
to greater substance use in the current study.

The amygdala has been implicated similarly in animal
models of stress-induced relapse [28,29] and in the ‘frus-
tration effect’, wherein response speed increases following
reward omission [60,61]. With respect to the latter, a sim-
ilar effect (i.e. increased inflation speed following explo-
sions) was correlated significantly with both substance
use outcomes and activation of Amyg/aHipp ROIs in the
current study. Behaviorally, this phenomenon is similar to
‘loss-chasing’ in pathological gamblers [62,63], which
has also been linked to amygdala in animal models [64].
Gambling disorder was not assessed herein, but is com-
monly comorbid with SUDs and may share similar neuro-
biological substrates [65].

Amygdala has been implicated further in individual
differences in risky reward-seeking by the triadic
model of motivated behavior [66], wherein different

neurodevelopmental trajectories of the striatal approach
system, amygdala-based avoidance system and prefrontal
control system underlie cognitive–behavioral changes
during adolescence. In line with predictions of this model,
problematic alcohol use has been associated with a
striatal–amygdalar imbalance, precipitating alcohol use
disorder when relative amygdalar hyperactivity is potenti-
ated by stress [67]. Consistent with current findings,
stress has also been shown to increase functional connec-
tivity between the amygdala and dorsal striatum which
may drive a shift towards faster, more impulsive
responding [68]. However, while a greater dorsal striatal
‘Successful_Gamble*p(Explode)’ signal correlated posi-
tively with substance use in the current study, neither
ventral nor dorsal striatal ROIs were identified by voxel-
wise predictive modeling.

Taken together, the current results add to converging
evidence in support of amygdala-based models of stress-
induced relapse. Susceptibility to stress-induced relapse is
state-dependent, making it challenging to characterize
through conventional psychometric approaches. A reliable
brain-based predictor of stress-induced relapse would have
a significant translational impact, but has not been de-
scribed previously for a naturalistic samplewhereinvulner-
ability to relapse is shaped, in part, by psychiatric
comorbidity. Recent evidence suggests that amygdala reac-
tivity predicts a fundamental vulnerability to life stress that
may predispose individuals to internalizing disorders [40],
as well as SUDs. In effect, previous exclusion of comorbid
presentations may have precluded identification of
amygdala-based neuroprognostic indicators. However, by
extension, the current findings may not generalize to those
with unimorbid SUDs.

Importantly, neural predictorsmay also inform develop-
ment of novel interventions and individualized treatment
approaches [5,69,70]. Antagonism of corticotropin-
releasing factor (CRF) may dampen the stress response in
the hypothalamic–pituitary–adrenal axis and amygdala
and has been shown to attenuate stress-induced relapse
in rats [71]. Evidence-based cognitive–behavioral interven-
tions may also prevent relapse by altering neural pathways
associated with stress responsivity and negative affect [72].
In addition, interventions that up-regulate dorsolateral
prefrontal cortex (dlPFC) function (e.g. cognitive reap-
praisal [73], repetitive transcranial magnetic stimulation
(rTMS) [74] and transcranial direct current stimulation
[75]) may improve regulation of amygdala reactivity
[76]. Indeed, rTMS over left dlPFC has been shown to re-
duce subjective craving and improve control of compulsive
substance use [77].

To our knowledge, this is the first study to utilize cross-
validation of voxel-wise predictive modeling with a contin-
uous substance use outcome variable. This method
uniquely identified ROIs in bilateral Amyg/aHipp
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associated with negative feedback. By comparison, whole-
brain correlation analyses identified several additional pre-
dictive clusters and only a single ROI in right Amyg/aHipp
for ‘Explode—Confirmed_Gain’. Small volume correction
for bilateral amygdala and hippocampus was sufficient to
identify clusters approaching cluster-corrected significance
in left Amyg/aHipp for both ‘Explode—Confirmed_Gain’
(x = �34, y = �20, z = �18; cluster size: 18;
t(21) = 4.30, P = 0.057) and ‘Explode—
Successful_Gamble’ (x = �32, y = �4, z = �20; cluster
size: 26; t(21) = 4.50, P = 0.046) contrasts. However, this
bilateral effect would have been overlooked if analyses
were limited to whole-brain correlations.

The current study has several limitations. Our modest
sample size precluded systematic investigation of sex differ-
ences [78–80] which may exist in neuropredictive signals
[25]. In addition, while we made efforts to identify general-
izable predictive signals (e.g. monetary incentives rather
than substance-related cues, leave-one-out cross-
validation), we were unable to explore SUD subgroups or
specific comorbidities. Moreover, we did not have a
matched healthy control group, so we cannot conclude
that predictive signals localized to Amyg/aHipp are ele-
vated relative to individuals without SUDs, although this
view is supported by existing evidence [31,50].

The current study represents the first effort to identify
neuropredictive indicators of relapse risk in a naturalistic
sample of SDIs, typical of community-based treatment.
We identified ROIs in bilateral Amyg/aHipp as significantly
predictive of substance use outcomes, even when control-
ling for significant non-brain-based covariates. In addition,
a novel behavioral correlate of relapse risk—faster reward-
seeking responses after negative feedback—was also identi-
fied. Results of the current study may have translational
relevance to the development of multi-modal assessment
tools and targeted interventions for individuals at the
highest risk of relapse.
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Figure S1 Location of right corticomedial amygdala
(cmAmyg) ROI and corresponding ROC curves for absti-
nence versus use and abstinence/lapse versus relapse clas-
sification criteria. Predictive regions identified for both
‘Explode – Confirmed_Gain’ and ‘Explode –

Successful_Gamble’ contrasts included the right cmAmyg.
For the ‘Explode – Confirmed_Gain’ contrast, the right
cmAmyg demonstrated “excellent” test quality for both
classification methods (with AUCs of 0.946 and 0.939 for
abstinence versus use and abstinence/lapse versus relapse,
respectively). BOLD response in right cmAmyg for the ‘Ex-
plode – Successful_Gamble’ contrast demonstrated “good”
test quality for both classification methods (with AUCs of
0.839 and 0.864 for abstinence versus use and absti-
nence/lapse versus relapse, respectively).
Table S1 Summary of self-report and additional cognitive-

behavioral measures: descriptive statistics and correlation
with SUM.
Table S2aResponse to BART Decision and Outcome Events
– Basic Event-Related Contrasts.
Table S2bResponse to BART Decision and Outcome Events
– Parametric Modulator Contrasts (Positive Correlations).
Table S2c Response to BART Decision and Outcome Events
– Parametric Modulator Contrasts (Negative Correlations).
Table S3 Summary of predictive model performance for
spherical ROIs defined in bilateral corticomedial amygdala
(n = 23).
Table S4 Summary of supplemental predictive models ex-
amining treatment setting as a covariate within peak ROIs
identified through leave-one-out cross-validation analysis
(n = 23).
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